Development of Highly Durable and Reactive Regenerable Magnesium-Based Sorbents for CO2 Separation in Coal Gasification Processes

Javad Abbasian Armin Hassanzadeh

Illinois Institute of Technology Chicago, IL

Annual UCR Contractors' Review Meeting Pittsburgh, PA June 10, 2004

Coal Gas Processing w/o CO2 Removal

Coal Gas Processing with CO2 Removal

Motivation of the Study

Advantages

- ❖ Maintaining High Efficiency (Gas Reheat, Steam Loss)
- Avoiding Capital Intensive Equipment (Heat Exchanger, Condensate Removal System)
- **❖** Co-Production of High Value Products [Superior Fuel, Premium Fuel/Chemicals (H₂)]
- Eliminating Corrosive Solvents (Amines)

▶ Issues??

- Process Economics is highly dependent on the Sorbent
- Desirable Sorbent Characteristics are very Demanding
- Long Term Durability is Crucial

Required Sorbent Characteristics

- **▲** CO2 absorption (250-450 C)
- **▲** Simple regeneration
- **▲** Sulfur Resistant
- **▲** Economical

Chemical Reactions

Sorption

$$MgO + CO_2 = MgCO_3$$

-25 kcal/mol

Regeneration

$$MgCO_3 = MgO + CO_2$$

+25 kcal/mol

$$CO + H2O = CO2 + H2 -10 kcal/mol$$

MgO-CO2 Equilibria

WGS Equilibria in Coal Gas (Texaco)

WGS Equilibria in Coal Gas (Texaco) with Cao-Based Sorbent

WGS Equilibria in Coal Gas (Texaco) with Mgo-Based Sorbent

Desired Sorbent Characteristics

- **▲** High Effective Capacity
- **▲** High Reactivity
- **▲ Low Attrition**
- **▲** Long Term Durability (# of Cycles)
- **▲** Low Cost per Unit CO2 Removed

Objective

To develop MgO-based sorbents with chemical and physical characteristics and long term durability that permit cyclic regeneration over many cycles.

Sorbent Preparation

Sorbent Type	No.
Total	29
Sol-Gel Sorbents	22
Modified Dolomite	7
Impregnated Sorbents	13
Incorporated Sorbents	16
Granular Sorbents	17
Pellet Sorbents	12
Sorbent with additive	17
No. of additives	5

Sorbent Characteristics

Magnesium Content, %	10-20
Specific Surface Area, m ² /g	120-280
Additive, %	1- 6
Attrition Index, %	0.04-2

Schematic Diagram of the High Pressure TGA Reactor

Sorbents Evaluation

TGA Test	No
Runs	32
Sorbents Tested	14
Individual Cycles	63
Successive Cycles	1-8

Operating Condition

Absorption Temperature, °C	360 - 500
Regeneration Temperature, °C	425 - 600
Pressure, bar	20
CO ₂ concentration, %	50
Carrier Gases	He, N ₂

Comparison of Sorbents

Effect of Additive Concentration

Effect of Temperature

Effect of Calcining Temperature

Effect of Temperature on Regeneration

Sorbent Regenerability

Effect of cycling

Effect of Cycling on Sorbents

Effect of Regeneration Temperature

Sorbent Retreatment

Schematic Diagram of the High Pressure Fixed-Bed Reactor

Conclusions

- **▲** Sorbent prepared by sol-gel technique have very low attrition index and low capacity.
- ➤ Sorbents prepared by modification of halfcalcined dolomite have very good reactivity, sorption capacity, and attrition index.
- **▲** Dolomite-based sorbents showed good reactivity in the temperature range of 360-450 C.

Conclusions (cont..)

➤ Sorbent reactivity and capacity decreases with cycling, but appear to be approaching a stable level.

➤ Sorbent reactivity and capacity can be restored to the initial values through sorbent re-treatment.

Future Work

- **▲** Continuation of sorbent Modification
- Sorbent Evaluation at high Pressure TGA and Fixed Bed
 - Effect of lower temperature
 - Extended Durability test (25-Cycle)
 - Repeated sorbent re-treatment
 - Effect of simulated coal gas (H₂ production)
- ► Initial evaluation of simultaneous CO₂ capture and WGS reaction for H₂ Production

Reproducibility

